汽车点火系统电路图_汽车点火系统电路图简图

       汽车点火系统电路图的今日更新不仅仅是技术上的更新,更是人们生活方式的改变。今天,我将和大家探讨关于汽车点火系统电路图的今日更新,让我们一起探讨它对我们生活的影响。

1.汽车启动电路原理

2.汽车发动机的点火系统?

3.本田车系电路图集的目 录

4.汽车点火线路图

5.电子点火装置的原理及其如何控制点燃烟火

6.汽车电路原理图(了解车辆电气系统的基本构成和工作原理)

汽车点火系统电路图_汽车点火系统电路图简图

汽车启动电路原理

       增大初级电流,提高次级电压和点火能量,改善高速性能。减小触点火花,延长触点使用寿命,克服机械触点带来的各种缺陷。维护容易,起动性能好。混合气燃烧完全,排污少。有利于汽车朝多缸、高速方向发展。

       汽车点火系统的作用

       1、点火系将电源的低电压变成高电压,再按照发动机点火顺序轮流送至各气缸,点燃压缩混合气;

       2、能适应发动机工况和使用条件的变化,自动调节点火时刻,实现可靠而准确的点火;

       3、在更换燃油或安装分电器时进行人工校准点火时刻。

        电子点火装置的组成

        ?由点火线圈、信号发生器、电子点火器等组成。

       信号发生器:将非电量转换为电量的传感器,它通过一定的方式将汽车发动机曲轴转过的角度或活塞在气缸在位置转换成相应的电脉冲信号,最后送到电子控制器中,控制初级电路的通断,产生点火信号。信号发生器通常安装在分电器内部,常用的信号发生器有电磁感应式、霍尔式和光电式三种。

       电子点火器:根据信号发生器送来的信号,通过电子元件控制点火线圈初级电路的通断,从而在次级电路产生高压,并通过分电器送入各缸的火花塞中,实现点火。根据使用的电子元件不同,有晶体管式、集成电路式、计算机控制式和整体式等几种点火器。

       点火线圈:使用闭磁路高能点火线圈。

       汽车点火系统电路图及工作原理

       1、磁感应式点火装置

       (1)信号发生器

       结构:由永久磁铁、感应线圈、转子等组成,如图1所示。转子由分电器轴驱动,其上有与发动机等缸数的齿数。

       图1 磁感应信号发生器的结构

       工作过程:当信号转子的两个凸齿中央正对铁心的中心线时,磁路中凸齿与铁心间的空气隙最长,通过线圈的磁通量最小,磁通的变化率为零;当信号转子的凸齿逐渐接近铁心时,凸齿与铁心间的气隙越来越小,线圈的磁通量不断增大,当凸齿的齿角与铁心边线相对时,磁通的变化率最大。随着转子的旋转,凸齿逐渐对正铁心,此时磁通的变化率在下降。当凸齿的中心与铁心正对时,空气隙最小,通过线圈的磁通量最大,但磁通的变化率为零,感应电动势为零。当凸齿离开铁心时,气隙在逐渐增大,磁通的变化率开始减小,感应电动势的方向发生改变,大小也随着凸齿的位置发生变化。整个工作过程如图2所示。

汽车发动机的点火系统?

       介绍三种较常见的点火系统。

       1、磁感应式电子点火系统

       解放CA1092、东风EQ1092、北京BJ2020等型汽车以及早期生产的部分轿车,都装配了磁感应式电子点火系统。它主要由磁感应式分电器、点火控制器、高能点火线圈和火花塞等组成,参见磁感应式电子点火系统原理图(图1)。

       磁感应式分电器主要由磁感应传感器、点火提前调节装置、配电器等组成。磁感应传感器由转子、定子、永久磁铁、传感线在1圈等组成。当发动机工作时,分寄电器通过转子、定子,使传感线器1圈内的磁通发生变化,产生电压信号,供给点火控制器。其突出优点是结构简单,不需外加电源。汽车维修养护网

       点火控制器又称电子点火控制器、电子点火组件或点火器,主要由点火专用的集成电路和一些辅助电子元件组成。它的主要作用是根据磁感应传感器输出的电压信号,控制点火线圈初级绕组电路的导通与截止,使点火线圈产生高压电。此外,点火控制器还有恒流控制、闭合角控制、停车断电控制、过压保护等功能。

       2、霍尔式电子点火系统

       解放CA6440、解放CA1046型汽车以及早期生产的部分轿车,大都采用了霍尔式电子点火系统。它主要由霍尔式分电器、点火控制器、高能点火线圈、火花塞等组成。参见霍尔式电子点火系统电路图(图2)。

       霍尔式分电器主要由霍尔传感器、点火提前调节装置、配电器等组成。霍尔传感器由触发叶轮、霍尔集成电路、导磁钢片、永久磁铁等组成。发动机工作时,分电器通过触发叶轮使霍尔集成电路的磁通发生变化,产生电压信号,供给点火控制器。与磁感应传感器不同的是,霍尔传感器需要一个输入电压。

       3、微机控制点火系统

       在发动机的电子集中控制系统中,点火系统由微机控制称为微机控制点火系统。现在生产的大部分轿车都采用微机控制点火系统。该点火系统主要由传感器、电子控制器、点火控制器(点火器)、点火线圈和火花塞等组成。参见微机控制点火系统原理图(图3)。

       传感器是监测发动机工况信息的装置。传感器的结构形式和装配数量依车而异,主要有曲轴位置传感器、空气流量传感器飞节气门位置传感器、爆震传感器、冷却水温度传感器、进气温度传感器、氧传感器、车速传感器、空挡起动开关、点火开关、空调开关、蓄电池等。

       电子控制器用ECU表示。ECU是发动机的控制核心。电子控制器的名称并不统一,生产厂家或公司不同,生产年代和控制内容不同,采用的名称也不尽相同。电子控制器主要包括输入回路、输出回路、模数A/D转换器或模数D/A转换器、单片微型计算机和电源电路等。由于电子控制器的核心部件是单片微型计算机,通常将电子控制器称为微机或电脑。电子控制器的作用是根据发动机各传感器输入的信息和微机内存数据,通过运算处理和逻辑判断,然后输出指令信号,控制有关执行器(如点火器)工作。

       点火控制器是发动机控制系统的执行器,其作用是根据微机发出的指令信号,通过内部大功率三极管的导通与截止来控制点火线圈初级绕组电路的通断,使点火线圈产生高压电。各型发动机点火器的内部结构各不相同,有的发动机并不配置点火器,大功率三极管直接设在电子控制器ECU内部;有的点火器只有一只达林顿三极管,仅起开关作用,其它电子控制元件则与电子控制器制成一体;有的点火器除开关作用外,还有恒流控制、闭合角控制、气缸判别、点火监视等功能。

       此外,微机控制点火系统又分为分配式(有配电器)点火系统和直接式(无配电器)点火系统。分配式点火系统点火线圈产生的高压电由配电器按发动机作功顺序分配给各缸火花塞跳火,仍然要产生较多电火花,不仅浪费能量,而且还产生电磁干扰信号。而直接式点火系统没有配电器,点火线圈次级绕组的两端直接与火花塞相连,发动机运转时,微机根据传感器信号,直接控制各个点火线圈产生高压电,使相应火花塞跳火。到目前为止,无配电器微机控制点火系统是技术最先进的点火系统。

本田车系电路图集的目 录

       电子点火系统工作原理

       一、 电火花的产生

       二、发动机的工作状况对点火的影响

       三、发动机对点火系统的要求

       四、数字式电子点火系统组成

       数字式电子点火系统是在使用无触点电子点火装置之后的汽油机点火系统的又一大进展,称为微型电子计算机控制半导体点火系统。

       点火系统的分类:

       A.。电感蓄能式点火系统(实际电路参见图3、4、5)

       点火系统产生高压前以点火线圈建立磁场能量的方式储存点火能量。目前汽车使用的绝大部分点火系统为电感储能式。(重点分析介绍)

       B.电容储能式点火系(图6)

       点火系统产生高压前,先从电源获取能量以蓄能电容建立电场能量的方式储存点火能量。多应用于高转速发动机上,如赛车。

       工作原理是把较低电源电压变换成较高直流电压(500V-1000V)对电容充电蓄能,点火时刻通过电

       容放电使变压器产生高压。特点是电容充放电周期快,高压跳火火花持续期短(约1微秒)且电流大,

       不存左火花尾。ECU根据发动机工况在一个点火周期内进行1-3次点火。

       电感蓄能式点火系统主要有微型电子计算机(ECU)、各种传感器、高压输出部分(功率管、变压器、高压线、火花塞)三大部分组成。(参见图1)

       1.ECU

       ECU就是整部汽车的智能控制中心,指挥协调汽车的各部工作,同时ECU还有自动诊断功能。

       其中处理控制点火系统工作是ECU众多工作重要的一项。ECU只读存储器ROM中存有500多万组

       数据,这些数据大多数是发动机通过各种实际工作情况测量优选得出的,包括了整个汽油机工作范围

       内各种转速和负荷下的最佳点火提前角及喷油脉宽等有关全部数据。不同型号整车的ECU的存储数

       据是不同的,各厂家对数据都是保密不公开的;这些数据保证了汽油机在功率性、加速性、经济性和

       排放控制方面达到最优组合。

       ECU控制点火原理

       发动机启动后,ECU每10ms采集一次发动机的各传感器动态参数,按预先编好的程序处理这

       些数据,并存入随机存储器RAM中;同时ECU还要根据电源电压大小、从其只读存储器ROM中选

       取出适应当前工况的高压变压器初级线圈电流导通时间,(即ECU输出宽度不同的方波电压控制高压

       输出糸统变压器初级线圈电流大小,实现对高压输电压大小的控制)ECU综合这些数据,从其只读

       存储器ROM中查找出(计算出)适应当前发动机工况的最佳点火提前角存入随机存储器RAM中,

       然后利用发动机转速(或转角)信号和曲轴位置信号,将最佳点火提前角转换成点火时刻,即切断高

       压变压器初级电流的时刻。

       在下列情况下ECU点火实行开环控制,点火按预设程序工作。

       A..发动机启动时。B.重负荷时。C.节气门全开时。

       2.传感器

       传感器就是各种不同类型及功用的测量元件,安装在发动机不同的有关部位,把发动机工况各种参数变化反馈给ECU作计算数据。

       在点火系统中应用的传感器主要有:空气流量计及进气温度传感器、发动机转速及曲轴位置传感器、节气门位置传感器、冷却液温度传感器及爆震传感器、氧传感等等。

       3. 高压输出

       A.高压输出功率三极管:在电路中起开关作用。

       B.高压输出变压器:在电路中把低电压转换成高电压供火花塞点火。

       C.高压线:在电路中把高压电传输到火花塞。

       D.火花塞:在电路中把高压电引进汽缸并把电能量转换成热能。

       点火的电原理

       变压器次级线圈分布电容及火花塞、高压线的分布电容组成回路电容C,电路无屏蔽时C约50PF,有屏蔽约150PF,火花塞间隙等同可变电阻R。

       高压能量分三个阶段变化消耗

       第一阶段

       电容C放电期(诱燃期):变压器次级线圈产生的点火高压对电容C充电,当电容C电压上升达到火花塞击穿电压时,火花塞跳火电容C快速放电, 火花塞间隙电压迅速下降到几百到几千伏,电容C放电瞬间电流达10-50安培以上,放电时间约1微秒。点火电压越高(即点火能量越大),C放电电流越大。

       正常状况下气缸的混合气就是这一时刻的火花点燃。如果跳火电离线被发动机气缸内高速扰流吹息,変压器高压再次对C进行充电,则C第二次放电产生电离通道。

       注:电压从10000V-20000V左右在1微秒内突降至几百到几千伏,由此产生了一个很强的方波

       电压,并通过高压线幅射电磁波,对外界电器产生干扰波。方波由N个正弦波组成,所以形成了一

       个1微秒时基为中心的干扰电磁频带。

       第二阶段

       电感放电期(燃烧期):电感放电是靠电容C放电产生的电离通道形成的低阻产生的。由于电容C放电产生的电离通导(电阻)不能立刻消失,同时变压器次级电感中还存有充足的高压能量,所以电感继续对电离通导放电使火花持续。

       由于次级线圈放电电流的变化引起磁通量的变化,次级电感线圈产生了一个感抗电动势,即产生一个与电感放电电流方向相反的电动势阻碍了电流的変化,使放电电流较小,电流在几到几十毫安,所以,高压能量需要较长时间放电才能消耗掉,这一电感放电火花持续期俗称火花尾。

       由第一阶段电容C放电诱燃后产生一个“火焰中心”,这个“火焰中心”跟随气缸内高速扰流移动离开了火花塞电极,这时电感电能放电火花又会点燃混合气另一个“火焰中心”,作为点燃混合气的补充,“火焰中心”使混合气在整个气缸内很快形成燃烧的“明亮火焰期”,即气缸内混合气燃烧温度达最高,气体压强达最高值。这个过程称为混合汽燃烧期, 燃烧时间在750μS-2500μS之间。

       电感放电火花在发动机启动及低速时非常重要,发动机在启动或非正常工况下,电容C放电期极有可能未点燃混合气,此时,只有靠电感放电火花来点燃燃混合气。

       冷车启动时气缸内的混合气温度低,雾化效果差,点然混合气需要较长火花期;在低转速时,由于气缸内混合气扰流速度低,第一个“火焰中心”移动慢,有必要点燃第二个“火焰中心”加快混合气的燃烧,所以点火火花期也较长。但当发动机转速较高时, 气缸内混合气扰流速度変快,“火焰中心”高速移动,快速传播引燃了缸内混合气,因此,并不需要第二个“火焰中心”。

       根据混合汽燃烧时间在750μS-2500μS之间,所以,火花持续期最长在700μS左右就可保证混合气的完全燃烧。实验证明火花持续期过长对燃烧效果并没有提高,相反,电离通道生产的高热加上火花塞自身温度反而加速了火花塞电极的烧蚀,这就是为什么要控制点火能量的主因。

       另外,从这一原理可以正明,点火能量的大小与高压线无关(当然,不包括损坏高压线)。

       第三阶段

       振荡衰减期:随放电时间的增加电感线圈储存能量(电压)消耗下降,使气体中分离的电离子越来越少,电感放电电流也就越来越少,电离通道温度下降,根着通道电离子数量急剧下降,即相当于通道电阻值R逐步上升変为无限大,火花塞停止跳火。这时电感剩余能量对电容C充电,电容C对电感放电,如此反复直至下一个点火周期的到来。

汽车点火线路图

       丛书序

       识图指南 电源分布(R20A3、K2422发动机)电路图(2008款)

       电源分布(J3522发动机)电路图(2008款)

       接地分布/充电及起动电路图(2008款)

       点火/发动机支座/巡航系统及仪表电路图(2008款)

       照明系统电路图1/2(2008款)

       照明系统电路图2/2(2008款)

       安全系统电路图1/2(2008款)

       安全系统电路图2/2(2008款)

       通信装置电路图(2008款)

       音响/导航/防盗锁止系统电路图(2008款) ECU/仪表板插接器端子说明(2006款1

       配电/接地分配电路图l/2(2006款)

       配电/接地分配电路图2/2(2006款)

       配电/接地分配位置图(2006款)

       起动/点火/充电系统及风扇控制电路图(2006款)

       L15A1/Ll 5A2发动机控制系统电路图(2006款)

       L15A1/Ll5A2发动机端子引脚说明(2006款)

       自动变速器控制系统电路图l/2(2006款)

       自动变速器控制系统电路图2/2(2006款)

       ABS/电动转向控制系统电路图(2006款)

       仪表电路与位置图(2006款)

       照明系统电路图1/3(2006款)

       照明系统电路图2/3(2006款)

       照明系统电路图3/3(2006款)

       电动装置电路图1/2(2006款)

       电动装置电路图2/2(2006款)

       空调系统电路图(2006款)

       防盗系统电路图1/2(2006款)

       防盗系统电路图2/2(2006款)

       安全气囊系统电路图(2006款) 配电系统电路图(2007款卜

       接地分布/充电/起动电路图(2007款)

       L13A3发动机电路图(自动变速器)(2007款)

       L15A1发动机电路图(自动变速器)(2007款)

       L13A3发动机ECU插脚说明表(2007款)

       L15A1发动机ECU插脚说明表1/2(2007款)

       L15A1发动机ECU插脚说明表2/2(2007款)

       L13A3发动机电路图(手动变速器)(2007款)

       L15A1发动机电路图(手动变速器)(2007款).

       L13A3发动机ECU插脚说明表(2007款)

       L15A1发动机ECU插脚说明表(2007款)

       自动变速器电路图(2007款)

       自动变速器/EPS电路图(2007款)

       仪表电路图(2007款)

       灯光照明电路图(2007款) 电动/通风装置电路图(2007款)

       配电系统电路图(2005款)

       配电继电器端子说明表(2005款)

       充电/起动/点火系统电路及位置图(2005款)

       发动机系统电路图(2005款)

       发动机ECU插脚说明表(2005款)

       自动变速器电路图(2005款)

       ABS电路图(2005款)

       仪表电路图1/2(2005款)

       仪表电路图2/2(2005款)

       照明系统电路图1/3(2005款卜

       照明系统电路图2/3(2005款)

       照明系统电路图3/3(2005款)

       电动装置电路图1/3(2005款)

       电动装置电路图2/3(2005款)

       电动装置电路图3/3(2005款)

       电热装置电路图(2005款)

       电声装置电路图(2005款)

       通风装置电路图(2005款)

       多路集成控制系统电路图(2005款)

       SRS(安全气囊)电路图(2005款)

       遥控开启及安全报警系统电路图(2005款) 起动/充电/点火/照明系统电路图(2006款)

       照明系统/电动装置电路图(2006款)

       电动/电热装置及EPS/ABS/VSA/SRS系统电路图(2006款)

       通风装置及巡航/发动机控制系统电路图(2006款) 仪表板熔丝/继电器盒内部电路图(2004款)

       起动/充电/点火/防起动系统及风扇控制电路图(2004款)

       K20A7/K20A8/K24A4发动机动力控制模块电路图1/2(2004款)

       K20A7/K20A8/K24A4发动机动力控制模块电路图2/2(2004款)

       J30A4发动机动力控制模块电路图1/2(2004款)

       J30A4发动机动力控制模块电路图2/2(2004款)

       自动变速器维修手册控制系统电路图(2004款)

       ABS/ABS-TCS电路图(2004款)

       仪表电路图(2004款)

       照明系统电路图1/2(2004款)

       照明系统电路图2/2(2004款)

       电动装置电路图(2004款)

       电动/电热装置电路图(2004款)

       电声/SRS(安全气囊)电路图(2004款)

       空调控制系统电路图(2004款)

       通信装置/遥控门锁系统电路图(2004款)

       遥控起动/安全报警系统电路图(2004款) 充电/起动/点火系统及仪表电路图(2002款)

       照明系统电路图(2002款)

       照明系统/电动装置电路图(2002款)

       电热装置电路图(2002款)

       防盗/ABS系统电路图(2002款)

       SRS/空调/D17A2发动机控制系统电路图(2002款)

       D17A2/K20A1发动机控制系统电路图(2002款)

       K20A1发动机控制系统电路图(2002款)

电子点火装置的原理及其如何控制点燃烟火

       汽车的点火线路是什么?汽车电子点火电路;

       1.电子点火系统与机械点火系统完全不同。它有一个电子点火控制装置,具有发动机在各种工况下所需的点火控制曲线(MAP图)。通过一系列传感器,如发动机转速传感器、进气管真空度传感器(发动机负荷传感器)、节气门位置传感器、曲轴位置传感器等。,可以判断发动机的工作状态,在MAP上可以找到发动机在这个工作状态下所需要的点火提前角,并可以按照这个要求进行点火。然后,根据爆震传感器信号,修正上述点火要求,使发动机在最佳点火时间工作。

       2.电子点火系统也可以分为闭环控制和开环控制:带有爆震传感器,可以根据发动机是否爆震及时修正点火提前角的电子控制系统称为闭环控制系统;如果没有爆震传感器,点火提前控制仅根据电子控制单元中设置的程序进行控制,这称为开环控制系统。

       3.电子点火系统专题讨论主要介绍各种电子点火系统的结构和工作原理,以及非接触式电子点火系统、带分电器的计算机点火系统和不带分电器的电子点火系统的常见故障诊断和排除方法。通过对这些问题的深入探讨,我们熟悉了电子点火系统。

       百万购车补贴

汽车电路原理图(了解车辆电气系统的基本构成和工作原理)

       电子点火糸统工作原理

       一、 电火花的产生

       我们知道物质由分子组成,分子又由原子组成,原子由原子核(包括质子和中子)和电子组成,电

       子围绕原子核旋转运动。在通常情况下,电子的负电荷和质子的正电荷相等,两者平衡使原子的总电荷

       量为零。在外界能量的作用下,原子外层的电子运动的速度加快到一定程度时,就会逸出轨道与其他中

       性原子结合,这一原子“俘获”电子之后负电荷量增加,呈现负极性,称之为“负离子”。而失去电荷

       的原子负电荷量减少,呈现正极性,称之为“正离子”。 离子有规律的定向运动便形成了电流。

       根据上述理论,混合气在进入气缸前 都会有微量分子游离成正离子和负离子。气缸压缩过程中,

       由于气体受挤压及摩擦也会产生更多的正离子和负离子。当火花塞两电极加有电压时,离子便在电场力

       的作用下分别向两极运动,正离子向负极运动、负离子向正极运动形成了电流。但是在电场力较小时(电

       压低),原子中的电子运动的速度低,不能摆脱原子核的引力逸出轨道,形成新的离子。所以,气体中

       也只有原来存在的离子导电,由于他们的数量很微小,放电电流微弱,所为只存在理论导通,电路中相当

       于串接了一个极大电阻R。(参见图2)

       随着电压的增高,电场力增大,原子动能增大,大量原子摆脱原子核的引力逸出轨道,混合气中产

       生了大量离子,同时正离子和负离子向两极运动的速度加快,正、负离子产生的动能轻而易举便能将中

       性分子击破,使中性分子分离成正离子和负离子,这些新产生正、负离子在电场力的作用下,也以高速

       向两极运动,又去击破其它中性分子,这样的反应连续发生象雪崩一样,使气体中向两极运动的正离子

       和负离子的数目剧增,从而使气体失去绝缘性变为导体(R変成较小阻值),形成放电电离通道,即击穿跳

       火。其中由于正负离子高速运动及摩擦碰撞形成的高温炽热电离通道(几千度)发光,于是我们就见到火

       花,同时,电离通道周围气体骤然受热膨胀发出“啪啪”声。

       二、发动机的工作状况对点火的影响

       (1) 火花塞电极间隙越大,在同样电压下极间隙越大电场越弱,电场力越小,较难产生足够的离

       子,故需较高的电压才能跳火。影响击穿电压的因素还包括:火花塞电极的形状、电压的极性。

       (2)气红内的气体密度大(混合气浓),单位体积中气体的中性分子数量越多,分子间距离越小,

       正离子或负离越容易与分子相撞,加速的距离短,速度不高动能小,难以击破中性分子产生新的离子。

       故需较高的电压才能跳火。同理,火花塞电极的温度越高,电极间近旁的气体密度越小,故需较低的电

       压就能跳火。

       (3) 混合气度温度越高,其分子内能越大,就越容易电离,因此跳火电压可降低;反之冷车启动时,

       由于混合气中离子运动能力低,不易电离,就需要较高的跳火电压。据测定,冷车启动时,跳火电压

       最高约为15kv-25 kv,温对积常后,汽车则只需要8kv—12 kV的击穿电压。

       三、发动机对点火系统的要求

       1.能产生足以击穿火花塞电极间隙的高压电

       火花塞电极间能产生火花时所需要的电压,称为击穿电压或称为跳火电压。正常情况下変压器输出高压大于跳火电压,反之失火。

       2.能够控制点火能量大小

       A.要可靠点燃混合气,火花塞必须具有足够的点火能量。在发动机正常工作时,电火花只要有1~10mJ的能量即可。但是在起动时,为保证可靠点火,火花塞的点火能量可达到100mJ。

       B.能根据发动机的各种工况对点火能量调整,即对高压输出晶体管导通时间(传统机械式闭合角的控制)长短的控制,达到对高压变压器初级电流大小(能量大小)的控制。

       3.点火时刻应适应发动机的各种工况

       A.发动机不同转速和负荷所要求的最佳点火提前角不同,点火系统必须能自动调节点火提前角。发动机的点火提前角表示式:

       实际点火提前角=初始点火提前角+基本点火提前角+修正点火提前角(或延迟角)。

       B.这种数字式电子点火系统还能将点火时间智能控制在临爆点或微爆点范围,使汽油机在功率、经济性、加速性和排放控制方面达到最优。

       四、数字式电子点火系统组成

       数字式电子点火系统是在使用无触点电子点火装置之后的汽油机点火系统的又一大进展,称为微型电子计算机控制半导体点火系统。

       点火系统的分类:

       A.。电感蓄能式点火系统(实际电路参见图3、4、5)

       点火系统产生高压前以点火线圈建立磁场能量的方式储存点火能量。目前汽车使用的绝大部分点火系统为电感储能式。(重点分析介绍)

       B.电容储能式点火系(图6)

       点火系统产生高压前,先从电源获取能量以蓄能电容建立电场能量的方式储存点火能量。多应用于高转速发动机上,如赛车。

       工作原理是把较低电源电压变换成较高直流电压(500V-1000V)对电容充电蓄能,点火时刻通过电

       容放电使变压器产生高压。特点是电容充放电周期快,高压跳火火花持续期短(约1微秒)且电流大,

       不存左火花尾。ECU根据发动机工况在一个点火周期内进行1-3次点火。

       电感蓄能式点火系统主要有微型电子计算机(ECU)、各种传感器、高压输出部分(功率管、变压器、高压线、火花塞)三大部分组成。(参见图1)

       1.ECU

       ECU就是整部汽车的智能控制中心,指挥协调汽车的各部工作,同时ECU还有自动诊断功能。

       其中处理控制点火系统工作是ECU众多工作重要的一项。ECU只读存储器ROM中存有500多万组

       数据,这些数据大多数是发动机通过各种实际工作情况测量优选得出的,包括了整个汽油机工作范围

       内各种转速和负荷下的最佳点火提前角及喷油脉宽等有关全部数据。不同型号整车的ECU的存储数

       据是不同的,各厂家对数据都是保密不公开的;这些数据保证了汽油机在功率性、加速性、经济性和

       排放控制方面达到最优组合。

       ECU控制点火原理

       发动机启动后,ECU每10ms采集一次发动机的各传感器动态参数,按预先编好的程序处理这

       些数据,并存入随机存储器RAM中;同时ECU还要根据电源电压大小、从其只读存储器ROM中选

       取出适应当前工况的高压变压器初级线圈电流导通时间,(即ECU输出宽度不同的方波电压控制高压

       输出糸统变压器初级线圈电流大小,实现对高压输电压大小的控制)ECU综合这些数据,从其只读

       存储器ROM中查找出(计算出)适应当前发动机工况的最佳点火提前角存入随机存储器RAM中,

       然后利用发动机转速(或转角)信号和曲轴位置信号,将最佳点火提前角转换成点火时刻,即切断高

       压变压器初级电流的时刻。

       在下列情况下ECU点火实行开环控制,点火按预设程序工作。

       A..发动机启动时。B.重负荷时。C.节气门全开时。

       2.传感器

       传感器就是各种不同类型及功用的测量元件,安装在发动机不同的有关部位,把发动机工况各种参数变化反馈给ECU作计算数据。

       在点火系统中应用的传感器主要有:空气流量计及进气温度传感器、发动机转速及曲轴位置传感器、节气门位置传感器、冷却液温度传感器及爆震传感器、氧传感等等。

       3. 高压输出

       A.高压输出功率三极管:在电路中起开关作用。

       B.高压输出变压器:在电路中把低电压转换成高电压供火花塞点火。

       C.高压线:在电路中把高压电传输到火花塞。

       D.火花塞:在电路中把高压电引进汽缸并把电能量转换成热能。

       高压的产生及控制原理

       基本理论:

       A.导体中有电流通过就会产生一个磁场,电流越大磁场越强。

       B.导体磁通量的变化(切割磁力线)会产生感应电动势,磁通量变化率越大产生感应电动势越强。

       C.导体中产生感应电动势的方向总是阻碍磁力线(电流)变化的,因此产生阻抗。

       D:电感元件导通时电流增加按时间指数规律变化。

       ECU根据发动机不同的工况、电源电压高低,选出只读存储器中存储的最佳点火数据,即输出

       不同宽度的方波电压给高压输出控制单元,控制功率三极导通、截止。→功率三极管基极接收到方波

       电压饱和导通, →高压输出变压器初级线圈电流开始导通,由于初级线圈存在电感产生一个反向电动

       势,所以电流不能突变,电流按指数曲线增大, (理论上时间无限长时电流达到最大值,但是在实际应

       用中我们只需应用电流快速上升期,因初级回路中只有电源电压及时间为变量,所以ECU就是按照

       这个指数规律,计算出导通时间长短,达到控制高压能量目的。) →并产生一个相应的磁场;→初级

       线圈电流会很快上升到预设值,到达点火时刻时,→ECU切断方波电压(或加一反向电压)使功率三极

       管立刻截止;→变压器初级线圈电流突然被切断,→即变压器磁力线突然消失(磁通量变化率很大)使

       变压器线圈产生感应电动势,→因变压器次级线圈绕有较多匝数所以产生出高的点火电压。假如每匝

       线圈感应电压为E,次级线圈有N匝,则次级电压为:U=E×N(伏)。

       点火的电原理

       整个点火糸统的电原理简化:图1;变压器次级工作等效:图2

       变压器次级线圈分布电容及火花塞、高压线的分布电容组成回路电容C,电路无屏蔽时C约50PF,有屏蔽约150PF,火花塞间隙等同可变电阻R。

       高压能量分三个阶段变化消耗

       第一阶段

       电容C放电期(诱燃期):变压器次级线圈产生的点火高压对电容C充电,当电容C电压上升达

       到火花塞击穿电压时,火花塞跳火电容C快速放电, 火花塞间隙电压迅速下降到几百到几千伏,电容

       C放电瞬间电流达10-50安培以上,放电时间约1微秒。点火电压越高(即点火能量越大),C放电电

       流越大。

       正常状况下气缸的混合气就是这一时刻的火花点燃。如果跳火电离线被发动机气缸内高速扰

       流吹息,変压器高压再次对C进行充电,则C第二次放电产生电离通道。

       注:电压从10000V-20000V左右在1微秒内突降至几百到几千伏,由此产生了一个很强的方波

       电压,并通过高压线幅射电磁波,对外界电器产生干扰波。方波由N个正弦波组成,所以形成了一

       个1微秒时基为中心的干扰电磁频带。

       第二阶段

       电感放电期(燃烧期):电感放电是靠电容C放电产生的电离通道形成的低阻产生的。由于电容C

       放电产生的电离通导(电阻)不能立刻消失,同时变压器次级电感中还存有充足的高压能量,所以电感

       继续对电离通导放电使火花持续。

       由于次级线圈放电电流的变化引起磁通量的变化,次级电感线圈产生了一个感抗电动势,即产

       生一个与电感放电电流方向相反的电动势阻碍了电流的変化,使放电电流较小,电流在几到几十毫安,

       所以,高压能量需要较长时间放电才能消耗掉,这一电感放电火花持续期俗称火花尾。

       由第一阶段电容C放电诱燃后产生一个“火焰中心”,这个“火焰中心”跟随气缸内高速扰流移

       动离开了火花塞电极,这时电感电能放电火花又会点燃混合气另一个“火焰中心”,作为点燃混合气的

       补充,“火焰中心”使混合气在整个气缸内很快形成燃烧的“明亮火焰期”,即气缸内混合气燃烧温度

       达最高,气体压强达最高值。这个过程称为混合汽燃烧期, 燃烧时间在750μS-2500μS之间。

       电感放电火花在发动机启动及低速时非常重要,发动机在启动或非正常工况下,电容C放电期极

       有可能未点燃混合气,此时,只有靠电感放电火花来点燃燃混合气。

       冷车启动时气缸内的混合气温度低,雾化效果差,点然混合气需要较长火花期;在低转速时,由于

       气缸内混合气扰流速度低,第一个“火焰中心”移动慢,有必要点燃第二个“火焰中心”加快混合气

       的燃烧,所以点火火花期也较长。但当发动机转速较高时, 气缸内混合气扰流速度変快,“火焰中心”

       高速移动,快速传播引燃了缸内混合气,因此,并不需要第二个“火焰中心”。

       根据混合汽燃烧时间在750μS-2500μS之间,所以,火花持续期最长在700μS左右就可保证混

       合气的完全燃烧。实验证明火花持续期过长对燃烧效果并没有提高,相反,电离通道生产的高热加上

       火花塞自身温度反而加速了火花塞电极的烧蚀,这就是为什么要控制点火能量的主因。

       注:次级电流不能简单应用I=U/R公式计算,因为电感产生的感抗电动势方向总是阻碍磁力线

       (电流)变化的,所以应用I=U/R+E/R计算,U高压电压,E感应电压,R回路电阻;或I=U/r ,

       r=火花塞等效电阻+高压线电阻+线圈直流电阻+感抗电阻。其实高压线电阻、线圈直流电阻在整个阻

       抗中的比例很小,所以可忽略不计。

       另会,从这一原理可以正明,点火能量的大小与高压线无关(当然,不包括损坏高压线)。认真看了这

       篇文章后,你们如果还是相信有XX高能量火花线,只能说明你水平大差。

       第三阶段

       振荡衰减期:随放电时间的增加电感线圈储存能量(电压)消耗下降,使气体中分离的电离子越来

       越少,电感放电电流也就越来越少,电离通道温度下降,根着通道电离子数量急剧下降,即相当于通

       道电阻值R逐步上升変为无限大,火花塞停止跳火。这时电感剩余能量对电容C充电,电容C对电

       感放电,如此反复直至下一个点火周期的到来。

       注:同样此阶段产生一个逐步衰竭的正弦振荡波对外界造成干扰,但强度远小于第一阶段电容放电干扰电磁波。

       多余的话

       汽车已有100多年历史,发动机的气缸、活塞等并没有变化,只是工艺的提高。自发动机引入微型电子计算机控制后,产生了质的变化。因此, 发动机系统越来越完善,从喷油到点火、进气到排气无不环环紧扣,相互相连。也就给我DIY的空间越来越少,顾此失彼,所以没有较高的专业水平请不要更换与原车不同的点火电器设备,特别是更改点火变压器请三思而行。

       在点火糸统中,很多人认为更换价格更高的火花塞及高压线会增加发动机的性能,其实不然。

       /viewthread.php?tid=242589

       随着汽车越来越多地进入社会与家庭,汽车爱好者及有关人员迫切希望了解汽车上一些系统的工作原理与维修。其中现代汽车电气部分广泛采用的电子点火系统就是很重要的部分。汽车为什么要采用电子点火?本着由浅入深的原则,本文首先简介传统的汽车机械式断电触点点火(俗称白金触点点火)的原理与不足之处。传统的机械式断电触点点火的原理图1是一个4缸汽油发动机的点火电路原理图。它主要由蓄电池、点火开关、断电触点、电容器、火花塞、点火线圈及附加电阻等组成。闭合点火开关后,蓄电池点火电流经过点火开关、附加电组(或经过启动机短路开关,启动时闭合)到点火花线圈的初级绕组,经过断电器触点,再经车身拾铁(即接地)回到蓄电池的负极。这时由于初级绕组中有电流通过,所以在点火线圈铁芯中形成了磁场并储存电磁能。当发动机运转带动分电器的凸轮(凸轮的棱角数等于发动机的气缸数)转动时,凸轮的棱角顶开动触点臂上的绝缘凸块使断电器触点打开,这时初级绕组中电流中断。由于点火线圈类似一个升压变压器,所以因互感的作用,次级绕组中便互感产生出20kv左右的高压电,从而经分电器击穿火花塞的电极,产生火花点燃气缸内的可燃混合气。在这种点火系统中,断电触点上并联的电容器(0.22μF左右)有两个重要的作用: 1. 当断电触点打开时,因磁场消失,初级绕组中将产生300V左右的自感电动势。若无电容器,这个自感电动势将使触点烧损。当断电触点打开时,电流流向电容器充电,这时电容器与初级绕组构成一振荡放电。充了电的电容器,以电流相反的方向通过初级绕组荡放电,加速了磁场的消失,使次级绕组的互感电动势升高。整个点火过程可分为两个阶段:断电触点闭合期间点火线圈初级绕组中电流的增长;断电触点打开后,次级绕组中高压电的产生。在这种传统的点火方式中,断电触点是故障的多发点,同时也是排除故障的突破口。此点火电路实质上就是把蓄电池12V的低压电,通过点火线圈(即变压器)升压到几万伏的高压电。大家知道变压器只对交流电起作用,而汽车上没有交流电源,所以用断电触点一开一闭,造成点火线圈初级绕组中的电流时通时断产生脉冲直流电,来仿效交流电。从而使次级绕组能够产生高压电。知道了这个原理,就不难判断故障所在,首先必须有良好的脉冲低压电(12V),否则就不会产生高压电。而造成脉冲低压电不良的原因,大多是断电触点烧损、接触不良、间隙失准所致。上述传统的机械式断电触点点火有几个根本的缺点: 1、 尽管有电容器的消弧作用,断电触点还是容易烧损。分电器的凸轮和动触点臂上的凸块容易磨损,从而引起断电触点接触不良和触点之间的间隙失准(正常间隙为0.35-0.45mm),造成车辆不易启动和点火时间的变化。点火线圈初级绕组中的电流不能加大(≤5A)。因为初级绕组中电流加大,更容易使断电触点烧损。但是要提高警惕次级绕组产生的互感电动势(亦即次级绕组的高压),更有利于点燃气缸内的可燃混合气,就必须加大通过初级绕组中的电流(即通过断电触点的电流)以产生更大的磁通变化量。这显然是一个不能解决的矛盾。1、 断电触点的间隙一经调好,人为地不再变动。大家知道汽车发动机的转速是在不断变化的,以4缸发动机为例,在低速时断电触点闭合时间长,点火线圈初级绕组中通过的电流,因而次级绕组产生的互感电动势就高;在高速时断电触点闭合时间短,初级绕组中通过的电流小,造成次级绕组产生的互感电动势降低。再则,随着发动机气缸数的增加(如6缸发动机),断电触点的闭合时间还要缩短,初级绕组中的电流进一步减少,最终使次级产生的互感电动势还要降低。虽然点火电路中有PTC附加电阻的补偿作用,但还是不能从根本上解决问题。总之,传统的断电触点点火系统,次级绕组中互感电动势的最大值(即击穿火花塞电极的放电电压),在很大程度上取决于断电触点断开时,初级绕组中电流所能够达到的最大值。次级绕组中的电压是随着发动机转速的增高和发动机气缸数的增加而下降。主要原因就是因为点火线圈初级绕组中的电流不能恒定(尽管有PTC附加电阻的补偿),点火闭合角不能控制。所以传统的机械式断电触点点火已经到了尽头,必须从本质上改变。无触点电子点火的原理与维修汽车采用电子点火是60年代末出现的。它取消了传统机械式点火装置中的断电触点,所以机械磨损问题减少了,许多甚至不存在磨损。因而带来了许多的优点,车辆启动容易、点火能量大、降低油耗、减少排污、减轻甚至不需要维护。无触点电子点火从使用的储能元件上可以分为:电感储能(储能元件是点火线圈)放电式电子点火和电容储能(储能元件是电容器)放电式电子点火两大类。前者主要用在汽车上,后者主要用于摩托车。无触点的汽车电子点火系统从采用的信号传感器(信号发生器)又可分为:光电式电子点火、电磁感应式(磁电式)电子点火和霍尔传感器(霍尔效应)式电子点火。汽车电子点火系统装置方框图见图2所示。因早期的光电式电子点火不十分理想,故现在基本上不使用了。目前普遍采用的是磁电式传感器和霍尔式传感器电子点火系统,点火控制器有分立元件和集成电路两种,配用高能的点火线圈等。其它部件类同传统的有触点式点火系统。1.磁电式电子点火系统的原理与维修 图3是一种汽车磁电式电子点火电路原理图。它由信号发生器L(信号传感器)、点火线圈、火花塞、电源(蓄电池)等组成。信号发生器的工作原理见图4。信号发生器安装在分电器内,它由铁芯、永久磁铁、信号线圈、触发轮及空气隙组成。工作时,由发动机带动分电器轴上的触发轮旋转,利用电磁感应原理,输出交变的信号电压。详细工作原理如下: 1当触发轮转到图4中(a)的位置时,信号线圈铁芯和触发轮的凸齿处在相接近的位置。这时空气隙越来越小,磁通量从此位置开始逐渐增加,当转到信号发生器线圈铁芯位于两个凸齿之间的某一位置时,磁通量的变化率最大。因而感应产生的电动势最高,即产生的信号电压亦最高。由楞次定律可知,A端为+、B端为-。 2触发轮继续转动到图4中(b)的位置时,信号线圈铁芯的中心位置正好与触发轮凸齿的中心相一致。这时空气隙最小,通过的磁通量最大,但磁通的变化率为零。所以线圈中感应的电动势亦为零,即无感应电压输出。 3当触发轮转到图4中(c)的位置时,触发轮的凸齿开始逐渐离开信号线圈铁芯,空气隙开始增大,磁通量开始减小。当转到触发轮的两个凸齿间的某一位置时,磁通的变化率最大。此时感应产生的电动势最高,但感应电压的极性与图a相反,即A为-、B为+。若触发轮不停地转动(发动机运转时),上述工作过程不断重复发生。对于4缸发动机,触发轮旋转一周360°产生4个交变信号电压,即90°产生一个交变的信号电压。它实际上类似一个小型的交流发电机,输出的交变信号电压送至点火控制器工作原理见图3,这是普通的汽车电子点火电路之一。工作原理很简单,它由信号拾取、整形放大、开关等电路组成。鉴于这些电路原理在一般电子书刊中均有介绍,故在此只简述工作过程。当信号发生器输出的交变压器A端为+、B端为-时,二极管D1截止,三极管T1导通,T2截止T3、T4导通,这时点火线圈初级绕组中流进电流储存能量。当触发轮转动,输出的交变压器A端为-、B端为+,二极管D1导通,三极管T1截止,T2导通,T3、T4截止。点火线圈初级绕组中的电流被切断。次级绕组产生高压电,使火花塞放电点火。图5是采用美国摩托罗拉公司生产的汽车专用点火集成电路89SO1的点火线路。工作原理大同小异,只不过增加了一些辅助的功能,如闭合角控制、点火恒流控制等。汽车电子点火系统的原理与维修(下)汽车电子点火系统一般来说是比较可靠的,但是也免不了有出故障的时候,下面介绍其检修步骤与方法:第1步:首先查看各导线有无明显的短路、断路接触不良等现象,不要一开始就盲目地拆卸电子点火器件。因为有许多故障都与汽车所处的特殊使用环境有关,如路面的颠簸、泥水的侵蚀、锈蚀。尤其是导线的插接件中侵入泥水后,极易造成短路、接触不良等故障。第2步:上述检查完好后,才可进一步检查点火系统中的各部件。首先检查各部件自身有接地回路的其自身接地是否良好,这一点也是故障的多发点。如点火控制器是靠其外壳与车身接地(或专用接地线),再也蓄电池负极连接一起构成回路的。如果接地不良,就会造成点火系统工作时好时坏,甚至完全不工作。第3步:确认电子点火部件有故障后,应拔掉分电器(信号传感器)与电子点火控制器的插头,先单独测试信号传感器,用万用表的交流电压挡接地信号传感器输出的插头上,启动发动机带动触发轮转动。这时万用表若无指示,即无信号电压输出,说明信号传感器有故障,用万用表测其电阻值时,一般正常应为几百欧姆(视不同的传感器信号线圈而定)。触发轮与信号线圈铁芯的间隙一般为0.2-0.4mm,否则应与调整或更换。第4步:检查电子点火控制器。电子点火控制器其实就是一个将输入信号波形整形放大的晶体管开关电路。先接通其工作电源,取蓄电池一格2V电压或用一节1.5V的干电池,+、-极分别触碰电子点火控制器的输入A、B两端(模拟信号传感器输出的信号电压),并用万用表直流电压挡监视点火线圈初级(电源输入端)与接地之间的电压。如果万用表的指示在接近0V(开关三极管导通时的管压降)和接近电源电压12V交替地变化,说明电子点火控制器良好。否则有故障。第5步:检测点火线圈。汽车上的点火线圈其实就是一个升压变压器。初级绕组的阻值应在0.5-1.7Ω,次级绕组的阻值应在3-4kΩ或 10-15kΩ(视配用不同的点火线圈而定。高压点火线阻值不得大于25kΩ,否则应更换。)一般经过上述几个步骤的检查,即可查出故障所在。当然汽车点火系统还有诸好火花塞、分火头及蓄电池等故障,不过那已是传统有触点式点火系统常遇到的普通问题。霍尔式汽车电子点火的原理与维修磁电式电子点火,因信号传感器是基于电磁感应原理,工作性质类似一个小型的交流发电机。所以发动机在低速运转(如启动时)时输出的信号电压较小,甚至更低转速时,产生不了足够的信号电压。因此它对发动机的转速有一定的要求。新型的霍尔传感器式汽车电子点火是应用了霍尔效应原理,传感器输出的是开关脉冲信号,且具有陡峭的前沿和后沿。只要发动机一转动它就有霍尔信号电压输出,不受转速的影响。且还不受温度湿度、等影响,可在恶劣的环境中稳定地工作。使得汽车点火的正时精度、可靠性大大提高,故障率大大减少,应用更为广泛。图6是汽车霍尔式传感器的工作原理与结构示意图简图。它是由霍尔元件、永久磁铁和一个能在霍尔元件与永久磁铁之间的空气隙里转动的像铲状的金属片(能阴挡、旁路磁场)等组成。工作时电源给霍尔元件提供一个很小的工作电流,发动机通过传动机构带动铲状的金属片旋转。当铲状的金属片进入霍尔元件与永久磁铁之间的空气隙时,如图6中的(a)所示,因磁场被金属片所阻挡旁路,所以霍尔传感器无霍尔信号电压产生。当铲状的金属片离开霍尔元件与永久磁铁的空气隙时,霍尔元件受到磁场的作用,如图6中的(b)所示,这时产生霍尔信号电压。图7是霍尔式汽车电子点火系统的结构方框图。 图8是应用在上海桑塔纳和红旗等轿车上的霍尔式电子点火电路原理图。主要元件采用汽车点火专用集成电路L497或L482。它具有过压、停车断电抛负载等保护功能。并兼有点火电流恒定、可变闭合角功能。点火控制器的5脚提供霍尔元件工作电源,2、3脚接地。6脚输入霍尔脉冲信号

什么是汽车电路图?

       汽车电气系统是车辆的重要组成部分,它包括多个电路和电器设备,如发电机、蓄电池、点火系统、照明系统、制动系统等。这些电路和设备协同工作,为车辆提供动力、照明、通讯、安全等功能。本文将介绍汽车电气系统的基本构成和工作原理,并提供汽车电路原理图,以帮助读者更好地了解汽车电气系统。

       汽车电气系统的基本构成

       汽车电气系统的基本构成包括发电机、蓄电池、电路保险丝、电路开关、电气负载、电路线束等。下面分别介绍这些部分的作用。

       发电机

       发电机是汽车电气系统的重要组成部分,它主要负责为车辆提供电能,保证车辆各项设备的正常运行。发电机通过转动发电机转子,产生电磁感应,将机械能转化为电能。发电机的输出电压通常为12伏特或24伏特,可以为蓄电池充电,并为车辆提供电力。

       蓄电池

       蓄电池是汽车电气系统的重要组成部分,它主要负责存储电能,为车辆提供启动电流和短时电源。蓄电池通常采用铅酸电池,它的电压为12伏特或24伏特,容量通常为40-100安时。蓄电池的正极和负极通过电路线束连接到发电机和电器设备上。

       电路保险丝

       电路保险丝是汽车电气系统的重要保护设备,它可以保护电路和电器设备不受过载和短路的损害。电路保险丝通常安装在电路的正极上,当电路出现过载或短路时,电路保险丝会自动断开电路,保护电器设备不受损坏。

       电路开关

       电路开关是汽车电气系统的重要组成部分,它可以控制电路的开关和电器设备的启动和停止。电路开关通常安装在车辆的驾驶室内,驾驶员可以通过电路开关控制车辆的各项设备,如照明、空调、音响等。

       电气负载

       电气负载是汽车电气系统的重要组成部分,它包括各种电器设备,如照明、音响、空调、制动系统等。这些电器设备通过电路线束连接到电路开关和蓄电池上,可以为车辆提供各种功能。

       电路线束

       电路线束是汽车电气系统的重要组成部分,它将电器设备、电路保险丝、电路开关、蓄电池等连接在一起,形成一个完整的电路系统。电路线束通常采用阻燃材料制成,在车辆的车身内部布置,可以保护电路和电器设备不受损坏。

       汽车电气系统的工作原理

       汽车电气系统的工作原理可以分为发电、充电、启动、运行和停止等阶段。下面分别介绍这些阶段的工作原理。

       发电

       发电是汽车电气系统的第一阶段,它主要由发电机完成。当发动机启动后,发电机开始转动,产生电磁感应,将机械能转化为电能。发电机的输出电压通常为12伏特或24伏特,可以为蓄电池充电,并为车辆提供电力。

       充电

       充电是汽车电气系统的第二阶段,它主要由发电机和蓄电池完成。当发动机运行时,发电机输出电流为蓄电池充电,保证蓄电池的电量充足。蓄电池的电量充足后,发电机会自动停止充电,以避免蓄电池过充电。

       启动

       启动是汽车电气系统的第三阶段,它主要由蓄电池和启动电机完成。当驾驶员启动车辆时,启动电机会从蓄电池中获取电流,带动发动机转动,使车辆启动。启动电机的电流通常为数百安培,需要蓄电池提供足够的电量。

       运行

       运行是汽车电气系统的第四阶段,它主要由电器设备和电路线束完成。当车辆启动后,各种电器设备开始工作,如照明、音响、空调、制动系统等。这些电器设备通过电路线束连接到电路开关和蓄电池上,可以为车辆提供各种功能。

       停止

       停止是汽车电气系统的最后阶段,它主要由电路开关和发动机完成。当驾驶员关闭车辆电源时,电路开关会切断电路,使各种电器设备停止工作。发动机也会停止转动,汽车电气系统进入停止状态。

       汽车电路原理图

       下面是汽车电路原理图,它展示了汽车电气系统的基本构成和工作原理。读者可以通过这个电路原理图更好地了解汽车电气系统的结构和工作原理。

       (此处插入汽车电路原理图)

       大众汽车电路符号及含义

       常见元器件字母代号含义

       大众汽车电路图中,电器元件在电路图中是主体,电器元件在图中用框图辅以相应的代号表示,通常用字母或字母加数字的组合对元件进行标注,每一个元件都有一个代号,例如A表示蓄电池,B表示起动机,C表示交流发电机等。了解这些字母的含义,对电路的识读和维修有很大的帮助。下表列出了大众汽车常用的元器件字母代号含义。

       接线代码说明

       在大众汽车电路图中,电路元件的接线点都以接线代码的方式标注出来。这些代码无论在电路的何处出现,相同的代码都代表相同的接点,在下图中,起动机B上有两个接线代码,分别为30与50的接点,而在点火开关D上也有代码为30与50的两个接点,这两个元件的代码为30与30之间是相连接的,30号线表示常电源,直接与蓄电池正极相连接,不受点火开关的控制;代码50与50之间也是相连接的,50号线是受点火开关控制的,只有在点火开关位于启动挡时,50号线才得电并供给负载电路。

       大众汽车电路常用接线代码说明如下表所示。

       熔丝与继电器

       大众车系中,熔丝与继电器多采用中央配电盒方式,如捷达、帕萨特、桑塔纳轿车等。如下图所示为捷达轿车中央配电盒,它几乎集中了全部熔丝,中央配电盒安装在刹车踏板上部,全车熔丝因车型配置不同而有所差异,并且熔丝容量用不同的颜色加以区别,全车极少数熔丝设置在蓄电池附近。中央配电盒内也集中了几乎全部继电器,全车有6~12个或24个继电器。几乎全部主线束均从中央配电盒背面插接后通往各用电器,这样全车线束也都集中在驾驶室的仪表板附近。

       目前大众新款车型中,多采用车载电源控制单元J519作为中央配电盒。它具有供电端子控制、灯光控制、雨刮控制、转向信号控制、风挡玻璃加热、个性化设置等功能。

       新款车型中,熔丝盒也自成一体,不与继电器混装在一起,有的装在左侧仪表台下,有的装在右侧仪表台下,如下图所示。通常厂家会在维修手册中给出各种车型熔丝、继电器位置与名称,供读者查阅。

       导线说明

       大众汽车电路图表达了两种性质的线路连接方式,即内部连线与外部接线,如下图所示。

       内部连线在图上以细线画出,这部分连接是存在的,但线路是不存在的。标示线路只是为了说明这种连接关系,同时使电路图更加容易被理解。

       外部接线在图上用粗实线画出,每条线上都标注有导线的颜色、导线的截面积。电路导线颜色用字母表示。如果导线是双色的,则以两种颜色的字母共同标记,放在前面的为主色,后面的为辅助色,例如sw/ge、li/ws等。导线的截面积以数字标示在导线颜色上方。

       大众汽车电路图的特点

       1. 全车电路图由三部分组成

       大众汽车全车电路图分为三部分,如下图所示。第一部分为中央配电盒电路,其中标明了熔丝的位置及容量,继电器位置编号及接线端子号等;第二部分是车上的电器元件及连线;最下面的横线是搭铁线,上面标有电路编号和搭铁点位置。第三部分搭铁线的标号是人为编制的,在实物中是不存在的,目的是为了方便标明在一页画不完的连线的另一端在何处,方便查找导线。

       2. 采用断线代号法解决横向连线问题

       电路图采用了断线代号法解决线路交叉问题。对于一些线路比较复杂的设备(如前照灯),它工作时要涉及点火开关、灯光开关和变光开关等配电设备,而这3个开关不在同一条纵线上,若按传统画法,必定要画一些横线将它们连接起来,这样图上就会出现较多横线,增加读图难度,为此,该电路图的总线路图采用了断线代号法。如上图中起动机电路导线的上半段在电路号码为“13”的位置上,下半段在电路号码为“18”的位置上,图中的处理方法是在上半段电路终止处画一个小方框,内标“18”,说明下半段电路应在号码为“18”的位置上寻找;下半段电路开始处也有一小个方框,内标“13”,说明上半段电路应在号码为“13”的位置上寻找。通过以上4个数字,上、下段电路就有机地联系在一起,从而解决了线路交叉的问题。

       3. 电路呈垂直方式分布

       总线路采用了垂直画线方式,图上不出现导线交叉,只有中央接线盒内才采用水平画线方式,出现了较多的水平导线,这些水平导线除了15、30、31、50、X外,还有一些临时编号线,如a、b、c、d、e、g、h、m、n、r等(如下图中的b、c线),这些线是在中央接线盒的内部,而在电路图的主体电路部分基本不出现交叉。

       4. 搭铁线的标注方式

       在搭铁线上,通常用圆圈圈起来的数字(或字母加数字)来表示电路中不同的搭铁点,只要圆圈内的数字(或字母加数字)相同,就说明它们是属于同一个搭铁点。通过这些用圆圈圈起来的数字号,就可以在电路图的说明中查找到搭铁点在车身的位置,如下图所示。

       5. 在表示线路走向的同时还表示出了线路结构情况

       汽车的整个电气系统以中央配电盒(又称熔丝-继电器插座板)为中心进行控制,大部分继电器和熔丝安装在中央配电盒的正面。接插器和插座安装在中央配电盒的背面。上图中的J18-X触点卸荷继电器在电路和图上标有13/30、14/85、12/87和11/86,其中分子数13、14、12和11是指中央配电盒上的X触点卸荷继电器各插孔位置(下图a),分母数30、85、87和86是指继电器上的4个插脚(下图b),分子和分母在插接时是相对应的。

       ▲ 图a 继电器位置图

       ▲ 图b X触点卸荷继电器插脚

       分母上数字的含义如下:

       85:用于搭铁,即接地线或蓄电池负极搭铁线。

       8:用于连接来自于点火开关控制的电源线,即条件电源线(如15号线或X线)。

       30:用于连接蓄电池正极,始终有电或称为常电。

       87:受继电器触点控制的电源线。当条件电源通电后,85号、86号线导通,继电器线圈产生磁性,吸引30号与87号线路之间的触点闭合,使用电器通电。

       识读示例

       下面以新速腾蓄电池、起动机、交流发电机、车载电网控制单元电路(下图)为例予以说明。

       从电路图中可以看出,蓄电池正极“+”分两路接线,一条接起动机30端子;另一条接电控箱上的螺栓。

       起动机的30号端子接蓄电池正极供电端;50号端子为启动控制端,与方框内代码为46的导线相接。

       交流发电机“B+”端为电压输出端,接200A的SA1熔丝。“L”端为充电指示灯控制端,经插头连接器T4t/2、车内空间导线束中的连接(61)后接载电网控制单元的T52c/32端。“DFM”端为交流发电机反馈信号输出端,经插头连接器T4t/1后与方框内代码为68的导线相接。

       主继电器J271与熔丝座SB一起安装在发动机舱左侧的电控箱上,主继电器的86脚为供电端;85脚为控制端,经电控箱的62端后与方框内代码为66的导线相接,它实际受发动机控制单元的控制,当发动机控制单元的相应端子输出低电压信号时,主继电器线圈得电,J271的主触点导通,主继电器的87号线与30号线导通,蓄电池电压分别供电给相关电器设备。来源:汽车维修技术与知识

       今天关于“汽车点火系统电路图”的探讨就到这里了。希望大家能够更深入地了解“汽车点火系统电路图”,并从我的答案中找到一些灵感。